Как быстро научить ребенка делить столбиком?

Составные задачи на нахождение стоимости

1. Купили 4 пирожка с вишней и 5 пирожков с творогом. Каждый из них стоит 20 копеек. Сколько денег заплатили за пирожки?2. Бабушка купила 4 м широкой тесьмы по 5 руб. и 3 м узкой тесьмы по 3 руб. Сколько денег заплатила бабушка за тесьму?3. Для аптечки купили 3 пачки ваты по 9 руб. и 4 бинта по 7 руб. Сколько стоит вся покупка?4. Хозяйка купила 10 кусков хозяйственного мыла по 3 руб. и 5 кусков детского мыла по 7 руб. Сколько денег заплатила хозяйка?5. Мама купила 8 йогуртов по 4 руб. и 2 фругурта по 10 руб. Сколько всего денег заплатила мама?6. Девочка купила 2 заколки для волос по 10 руб. и 4 резинки для волос по 2 руб. Сколько денег заплатила девочка?7. Купили 3 больших пакета по 7 руб. и 4 маленьких пакета по 3 руб. Сколько денег заплатили за пакеты?8. Оля купила 2 пачки «рожков» по 7 руб. и 3 пачки макарон по 10 руб. Сколько денег заплатила Оля?9. Мама купила 4 пачки фруктового мороженого по 7 руб. и 3 пачки шоколадного мороженого по 9 руб. Сколько денег заплатила мама за мороженое?10. Купили 2 губки для мытья посуды по 3 руб. и 4 мочалки для мытья посуды по 5 руб. Сколько денег заплатили за всё?

Карточка 2

Сосчитай, записывая примеры в столбик.

32+49 37-16
46+24 70-48
83+8 53-38
38+32 45-8

Сосчитай, записывая примеры в столбик.

80-67 45+14
93-48 38+47
59-42 75+8
36-9 68+27

Сосчитай, записывая примеры в столбик.

46+37 80-38
22+58 93-56
59+9 75-9
64+27 87-32

Карточка 7

В летний лагерь приехали дети на двух автобусах. В первом автобусе было 46 детей, а во втором — на 8 детей меньше. Сколько всего детей приехало в школьный лагерь?

3∙7 2∙9 5∙3 9∙0
20:4 70:10 8∙10 32:4
27:3 21:7 7∙4 8∙3
c∙4=12 6∙c=18 27:c=3
2∙7 5∙9 8∙3 8∙4
25:5 8∙10 7∙0 60:6
36:4 16:4 21:7 15:3
c∙3=12 8∙c=24 25:c=5
2∙7 5∙9 8∙3 8∙4
25:5 8∙10 7∙0 60:6
36:4 16:4 21:7 15:3
c∙3=12 8∙c=24 25:c=5
2∙7 5∙9 8∙3 8∙4
25:5 8∙10 7∙0 60:6
36:4 16:4 21:7 15:3
c∙3=12 8∙c=24 25:c=5

Найди значение выражения, решая по действиям.

60-(8∙3)+(4∙7)

Найди значение выражения, решая по действиям.

70-(7∙3)+(8∙4)

Найди значение выражения, решая по действиям.

64-(27+14)+(6∙4)

Найди значение выражения, решая по действиям.

60-(8∙3)+(4∙7)

Найди значение выражения, решая по действиям.

38+(6∙3)-(4∙7)

Карточка 20

На зиму мама закрыла 4 банки вишнёвого варенья, а малинового — в 3 раза больше. Сколько банок малинового варенья закрыла мама? Сколько всего банок закрыла мама на зиму?

Карточка 21

В первый день маляр покрасил 5 скамеек, а во второй — в 4 раза больше. Сколько скамеек покрасил маляр во второй день? Сколько всего скамеек покрасил маляр за два дня?

Карточка 22

Пятачок за неделю съел 3 баночки мёда, в Винни-Пух — в 3 раза больше. Сколько баночек мёда съел Винни-Пух? Сколько баночек мёда они съели вместе?

Карточка 23

Перед домом посадили 4 ели, а берёз — в 3 раза больше. Сколько посадили берёз? Сколько всего деревьев посадили перед домом?

Карточка 24

Денис нарисовал 16 флажков, а Дима — в 4 раза меньше. Сколько флажков нарисовал Дима? Сколько всего флажков нарисовали мальчики?

Карточка 25

Алёна придумала 12 загадок, а Максим — в 2 раза меньше. Сколько загадок придумал Максим? Сколько всего загадок придумали оба мальчика?

Карточка 26

Мастер за день изготовил 24 детали, а его ученик — в 3 раза меньше. Сколько деталей изготовил ученик? Сколько всего деталей они изготовили вместе?

Карточка 28

На первом острове живёт 32 индейца, а на втором — в 4 раза меньше. Сколько индейцев живёт на втором острове? Сколько всего индейцев на двух островах?

Карточка 29

В куске было 54 метра ткани. Из этой ткани сшили 8 курток, расходуя по 3 метра на каждую. Сколько метров ткани осталось в куске?

В театре ученики первого класса заняли в партере 2 ряда по 9 мест и еще 13 мест в амфитеатре. Сколько всего мест заняли ученики первого класса?

Актовый зал освещает 6 люстр по 8 лампочек в каждой, да еще 7 лам­почек над сценой. Сколько всего лампочек освещает актовый зал?

К празднику купили 4 набора шариков по 10 штук в каждом наборе. Лопнули 12 шариков. Сколько шариков осталось на празднике?

В 3 одинаковых наборах 18 карандашей. Сколько карандашей будет в 7 таких наборах?

Начерти таблицу и реши задачу.

Для изготовления 5 одинаковых конструкторов потребовалось 35 деталей. Сколько деталей нужно для изготовления 8 таких конструкторов?

Начерти таблицу и реши задачу.

Крупу разложили на 6 одинаковых упаковок общей массой 12 кг. Сколько упаковок получится из 20 кг?

Начерти таблицу и реши задачу.

В 3 банки для засолки разложили 12 кг помидоров. Сколько банок потребуется для засолки 32 кг помидоров?

Начерти таблицу и реши задачу.

На 32р. купили 4 тетради. Сколько тетрадей можно купить на 56 рублей? на 16 рублей?

Начерти таблицу и реши задачу.

В 2 ведра помещается 16 кг картофеля. Сколько вёдер нужно, чтобы разложить 24 кг картофеля?

Начерти таблицу и реши задачу.

В 4 наборах 32 листа цветной бумаги. Сколько наборов составляют 72 листа бумаги?

Начерти таблицу и реши задачу.

  • Начерти прямоугольник со сторонами 8 см и 4 см. Найди его площадь и периметр.
  • Сравни:
12 смc1см2мм 7 мc74 дм 9 ммc1 см
14 смc1дм4см 8см7ммc90 мм 100 смc1 м
  • Начерти прямоугольник со сторонами 5 см и 4 см. Найди его площадь и периметр.
  • Сравни:
14 смc1см4мм 9 мc94 дм 9 ммc1 см
18 смc1дм8см 6см7ммc70 мм 10 смc1 дм

Расставь знаки «+», «-», «·», «: » так, чтобы равенства стали верными.

26*6*7=13 2*2*4=0
7*9*2=18 8*9*2=70
9*9*2=20 8*4*2=30
9*2*2=16 40*5*7=56

Из 12 м ткани портной сшил 6 одинаковых костюмов. Сколько метров ткани потребуется на 10 таких костюмов? на 7 костюмов?

Начерти таблицу и реши задачу.

В огороде собрали 24 кг моркови, редиса — в 4 раза меньше, чем моркови, а чеснока — в 5 раз больше, чем редиса. Сколько килограммов чеснока собрали?

Из 15 м тюля сшили 5 одинаковых занавесок. Сколько таких занавесок можно сшить из 21 м тюля? Сколько понадобится тюля, чтобы сшить 9 таких занавесок?

Начерти таблицу и реши задачу.

Таблица деления на 9

Таблица деления на 9

Одно из самых сложных действий в таблице деления — это деление на 9. Многие дети быстро понимают эти примеры, а другим нужно время.

Таблица деления на 9:

0:9=0  (0 разделить на 9, получается 0)

9:9=1  (9 разделить на 9, получается 1)

18:9=2  (18 разделить на 9, получается 2)

27:9=3  (27 разделить на 9, получается 3)

36:9=4  (36 разделить на 9, получается 4)

45:9=5  (45 разделить на 9, получается 5)

54:9=6  (54 разделить на 9, получается 6)

63:9=7  (63 разделить на 9, получается 7)

72:9=8  (72 разделить на 9, получается 8)

81:9=9  (81 разделить на 9, получается 9)

90:9=10  (90 разделить на 9, получается 10)

Принцип деления для детей

Дальше приступают к формированию самого понимания, что деление – это процесс разделения чего-нибудь на одинаковые части. Проще всего обучить ребенка такому математическому действию – попросить разделить небольшое количество предметов между ним и членами семьи. Используя игровой подход, ему легче уловить суть самого процесса деления.

Так, например, просят разделить апельсин на дольки между ним и членами семьи, чтобы у всех было поровну. Сначала ребенок будет перекладывать по одной штучке. Потом нужно предложить ему подсчитать, сколько долек было изначально, и какое количество досталось каждому.

Надо показать ребенку, что уметь разделить предметы – значит разложить их таким образом, чтобы все получили поровну независимо от количества участников. При этом объясняют, что не всегда их можно разделить на одинаковые части. Приводят пример. Если 10 яблок разделить между папой, мамой и бабушкой, то каждый получит по 3 штуки, а 1 останется.

Чтобы процесс обучения давался ребенку более легко, можно использовать наглядный материал. Используйте счетные палочки, раскладывая их в отдельные «кучки», имитируя деление палочек на несколько равных частей. Можно использовать орешки, семечки, карандаши. Обязательное условие – учитесь играя.

После того, как ребенок усвоил саму суть принципа деления, надо начинать изучать математическую запись этой операции. Объясняют, что деление – операция противоположная умножению. Демонстрируют это с помощью таблицы умножения.

Например, 3х2=6. Надо повторить, что произведение данных чисел равно результату умножения. Потом показать, что операция деления, противоположная умножению и все это показать ребенку. Делят наше произведение «6» на множитель «3», и в результате будет другой множитель.

Задача родителей – объяснить юному дарованию таблицу умножения «наизнанку»

Очень важно, чтобы ребенок ее хорошо усвоил. Это знание будет просто необходимо для изучения деления в столбик

Разложение на слагаемые

Интересным вариантом алгоритма является метод разложения числа на слагаемые. Его суть очень проста: представление делимого в виде суммы нескольких слагаемых, при условии деления каждого из них на выбранное число. Инструкция является очень простой. Она может стать дополнительным математическим тренажером для ребенка, поскольку развивает мышление и улучшает память. Для деления любого числа на другое нужно строго выполнить следующие шаги:

  1. Методом подбора разложить число на слагаемые, каждое из которых должно делиться на делитель.
  2. Разделить значения в первом пункте на заданный делитель.
  3. Сложить результаты для получения итоговой суммы.

На первом шаге специалисты рекомендуют слагаемые отделить от делителя круглыми скобками. Записывать нужно в одну строчку для наглядности. Далее следует выполнить деление или сократить слагаемые на множитель. Полученную сумму сложить и записать ответ. Например, следует вычислить 156/4.

Выполняется эта процедура таким образом:

  1. Разложение: 156 = (140 + 16) = (160 — 4).
  2. Деление: (140 + 16) / 4.
  3. Результат: 35 + 4 = 39.

Специалисты рекомендуют представлять число в удобной форме, а не только в виде суммы. Доказывать, что это значение является простым не нужно, поскольку не стоит такая задача. Этот алгоритм необходимо записать на картонную карточку. Чтобы научиться по нему решать, можно также написать текст или инструкцию. Одним словом, следует руководствоваться удобством для ребенка.

Умножение суммы на число

Задание. Посчитайте и запишите решение на вопрос: сколько квадратов в прямоугольнике?

Вариант 1. Рассуждайте так: в ряду шесть синих квадратов плюс три красных квадрата. Рядов 4. Значит, запишите решение:

Сумма в скобках равна девяти. 9 ∙ 4 = 36. Это табличное умножение.

Вариант 2. Количество квадратов подсчитайте другим способом. Узнайте, сколько синих, потом, сколько красных, полученные результаты сложите.

Таким способом удобно умножать большие величины.

Любое двузначное число легко записать как сумму разрядных слагаемых: круглых десятков и единиц.

Умножайте сначала десятки, потом единицы, произведения складывайте.

Как это сделать, рассмотрите на примере.

Сумму десяти и пяти умножим на шесть.

Это распределительное свойство умножения суммы на число.

Правило умножения суммы на число запишите буквенным выражением.

За внимание награждаю вас оранжевой лентой. Идите по маршруту дальше

Идите по маршруту дальше.

Составные задачи на разностное и кратное сравнение

1. Тётя Ира купила 3 кг моркови, а картофеля в 3 раза больше. На сколько килограммов больше купила тётя Ира картофеля, чем моркови?2. В магазин привезли 12 ящиков зелёных яблок, а красных в 2 раза меньше. На сколько меньше привезли ящиков красных яблок, чем зелёных?3. В детской комнате 2 стула, а в спальне в 3 раза больше. На сколько больше стульев в спальне, чем в детской комнате?4. В вагоне поезда ехало 30 взрослых пассажиров, а детей в 6 раз меньше. На сколько меньше в вагоне поезда было детей, чем взрослых?5. У портнихи 9 катушек белых ниток, а чёрных в 2 раза больше. На сколько меньше у портнихи катушек белых ниток, чем чёрных?6. В английской группе 14 учеников, а в немецкой в 2 раза меньше. На сколько больше учеников в английской группе, чем в немецкой?7. В доме 3 дивана, а кресел в 3 раза больше, чем диванов. На сколько меньше в доме диванов, чем кресел?8. У бабушки 4 сковородки, а кастрюль в 3 раза больше, чем сковородок. На сколько меньше у бабушки сковородок, чем кастрюль?9. У Оксаны 4 блузки, а у Карины в 2 раза больше. На сколько меньше блузок у Оксаны, чем у Карины?10. Папа съел 6 ломтиков колбасы, а мама в 3 раза меньше. На сколько ломтиков папа съел больше, чем мама?

Задания для домашней работы

Задания для домашних работ для 3 класса (3 четверть)

1. Реши примеры.

а) 5 * 6 + 64 : 8 = б) 18 : 9 + 37 * 2= в) 31 * 3 – 56 : 8 = г) 70 – 51 : 3 * 4 =
д) 9 * 4 – 28 : 7 = е) 7 * 16 – 80 : 8 = ж) 11 * 5 – 49 : 7 = з) 68 – 19 + 30 : 2 =

2. Реши задачу.

В ящик помещается 12 пачек печенья. Сколько всего пачек печенья помещается в 5 ящиков?

3. Реши задачу.

В книжный магазин привезли 88 учебников, которые упакованы в коробки. Сколько коробок с книгами привезли, если в каждой коробке находится 11 учебников?

4. Реши примеры.

а) 17 * 0= б) 12 : 1=
в) 24 * 1 = г) 21 : 1 =
д) 0 * 32 = е) 0 : 15 =

5. Реши задачу.

В пекарне из 15 кг муки испекли 45 тортов. Сколько килограмм муки необходимо, чтобы испечь 60 тортов?

6. Реши задачу.

На складе находилось 45 кг сахара. Дополнительно привезли 4 мешка по 8 кг сахара в каждом, а затем со склада увезли 10 кг сахара. Сколько килограмм сахара осталось на складе?

7. Реши примеры и проверь операцию деления умножением.

а) 48 : 6 = б) 12 : 4=
в) 24 : 8 = г) 21 : 7 =
д) 15 : 3 = е) 0 : 15 =

8. Реши уравнения.

а) X * 18 = 72 б) 90 : Y = 30 в) 21 : X = 3 г) Y * 6 = 42

9. Реши ЗАДАНИЯ по геометрии.

a) Начерти c помощью линейки 3 отрезка. Длина первого отрезка равна 5 см, второй отрезок на 3 см длиннее первого, а третий отрезок в 2 раза короче второго.
б) Найди и выпиши все прямые, тупые и острые углы у фигур, изображённых на рисунке.

а) 17 * 3 = б) 52 : 4 =
в) 19 * 4 = г) 48 : 2 =
д) 12 * 5 = е) 69 : 3 =
ж) 22 * 3 = з) 17 * 4 =
к) 13 * 5 = л) 75 : 5 =
м) 96 : 4 = н) 69 : 3 =

11. Реши задачу.

Школьная бригада собрала в саду 36 кг яблок и 20 кг груш. Весь урожай разложили в ящики по 4 кг. Сколько ящиков понадобилось?

Задания для домашней работы для 3 класса (4 четверть)

1. Реши примеры.

а) 210 * 4 = б) 840 : 4 =
в) 6 * 120 = г) 660 : 3 =
д) 220 * 4 = е) 490 : 7 =
ж) 190 * 3 = з) 360 : 6 =
к) 3 * 280 = л) 140 : 2 =
м) 110 * 7 = н) 640 : 4 =

2. Реши примеры.

а) 970 – 50 = б) 320 + 50 =
в) 520 – 10 = г) 630 + 90 =
д) 320 – 30 = е) 230 + 90 =
ж) 220 – 20 = з) 590 + 50 =

3. Реши задачу.

Для ремонта школы привезли 160 мешков цемента и 440 мешков песка. Сколько мешков строительного материала потребовалось для ремонта, если после ремонта осталось 250 мешков?

4. Реши задачу.

Фермер вырастил 230 ц картофеля и 140 ц капусты. 360 ц овощей отправили в школьную столовую. Сколько центнеров овощей осталось у фермера?

5. Реши уравнения.

а) 7 * х = 490
б) у : 9 = 70
в) a – 560 = 120
г) b + 380 = 960

6. Реши задачу.

На автостоянке стояло 84 легковых и несколько грузовых машин, которых было на 63 машины меньше, чем легковых. Во сколько раз грузовых машин меньше, чем легковых стояло на автостоянке?

7. Реши примеры столбиком.

а) 984 – 159 = б) 523 + 369 =
в) 523 – 459 = г) 374 + 579 =
д) 319 – 198 = е) 130 + 379 =

8. Реши примеры.

а) 24 * 8 + 336 : 6 + 88 =
б) 16 * 9 + 342 : 2 – 146 =

9. Реши задачу.

На продуктовом складе находилось 64 мешка с сахаром и несколько мешков с мукой, которых было на 56 штук меньше, чем мешков с сахаром. Во сколько раз мешков с мукой меньше, чем мешков с сахаром находилось на складе?

Признаки делимости

Для разбора алгоритма деления 2 значений, которые являются внетабличными (отсутствуют в таблице умножения), необходимо обозначить элементы операции. Пусть дано некоторое выражение v: t = p. Коэффициенты в нем расшифровываются следующим образом:

  1. V — делимое, т. е. число, которое требуется разделить.
  2. T — математики называют его делителем.
  3. P — частное является числовым результатом, который будет получаться при делении двух величин.

Иногда в литературе с физико-математическим уклоном можно встретить такую запись: v / t = p. Кроме того, числа классифицируются на простые и составные. К первой группе относятся все значения, которые делятся без остатка только на 1 или на значение равное исходному, т. е. 23 делится на 1 и на 23, а остальных делителей у него нет вообще. Вторая группа — значения, состоящие из нескольких множителей. Например, 100 = 25 * 4 = 5 * 5 * 2 * 2.

Десятичная система состоит из однозначных цифр, формирующих двузначные, трехзначные, четырехзначные, пятизначные числа (количество разрядов можно продолжать до бесконечности). Для деления двухзначного значения на однозначное без остатка необходимо знать следующие свойства (признаки деления):

  1. 0: операция невозможна, поскольку превращает все выражение в пустое множество.
  2. 1: делятся все значения.
  3. 2: последняя цифра является четным значением, т. е. 0, 2, 4, 6 и 8.
  4. 3: сумму цифр, составляющих число, можно разделить на 3. Например, проверить возможность деления 72 на 3. Для этого следует применить такое правило: 7 + 2 = 9. По таблице умножения 9 делится на 3 без остатка. Следовательно, 72 делится на 3.
  5. 4: сумма двух цифр делится на 4. Если представлено 5-значное число, то нужно рассматривать 2 последних цифры.
  6. 5: последней цифрой является 0 или 5.
  7. 6: деление на составные части, т. е. на 2 и 3.
  8. 7: возможность выполнения операции определяется по формуле / 7, где а, b и с — соответствуют первой, второй и третьей цифрам. Для двузначной величины — a / 7 и b / 7.
  9. 8: должно делиться на 2 и 4. Если количество цифр больше 2, то следует рассматривать делимость без остатка трех последних цифр.
  10. 9: деление по таблице умножения. Если число состоит из трех и более цифр, то следует рассматривать деления их суммы на 9.

Деление двузначного числа на однозначное

Ребята, вы меня узнали? Люблю наряжаться на маскарад. Вот прицепил такие усы, думал, что буду похож на фокусника. Чудеса начинаются.

Такие задания называют примерами с «усиками». Да, да, но усики носят не люди, кто делит, а сами примеры. Рисовать их нужно простым карандашом, а когда научитесь быстро считать, то просто представляйте в голове.

Устное деление двузначного на однозначное

Задание 1.

Пусть надо решить, сколько будет

К «усикам» запишем такие два слагаемых, которые делятся на 8, а в сумме дают 96.

Самое главное — это не ошибиться в подборе первого «усика». Надо запомнить, что он всегда больше, чем второй. Ищем его, умножая 8 на 10. Если не подойдет, то будем умножать на 20, на 30. Главное, чтобы было круглое число.

Все понятно? Будем тренироваться.

Задание 2.

Задание 3.

Попробуем разделить 90 на два. «Первый усик» явно не 20, тогда второй будет 70. Знаем, что «второй усик» не может быть больше первого.

Вижу, что не 60, потому что 30 разделить на два — это не табличный случай.

Следовательно, 2 ∙ 40 = 80. Значит «первый усик» предположительно 80. «Второй усик» тогда найдем вычитанием: 90 – 80 = 10. Десять разделить на два, это таблица.

Как думаете, вы справитесь с делением? Когда встречаете случаи, где двузначное число делится на однозначное, и примеры не относятся к таблице умножения, то решайте подбором «усиков». Разбивайте делимое на подходящие слагаемые. Их можно записать суммой в скобочках, а при делении использовать правило деления суммы на число.

Решите задачу.

Таня выполнила 96 примеров, а Коля в 4 раза меньше. Сколько примеров решил Коля?

Чтобы ответить на вопрос задачи, надо выполнить действие деления.

96 : 4 =

«Усиками» будут 80 и 16, получается сумма 80 + 16. Значит, каждое из этих слагаемых разделите на 4, а частные сложите.

Ответ: 24

Деление столбиком двузначное на однозначное

Письменное деление уголком просто невозможно усвоить без блестящего знания таблицы умножения. Это просто трата времени и нервов. В древности в римских школах ее заучивали хором на распев. Знаете ответы на «отлично», тогда переходите на примеры деления в столбик.

Задание 1.

Пусть надо 84 разделить на три. Посмотрите на запись. Такой значок означает деление уголком. Уголок имеет наверху делитель, на который делим. Под чертой — результат, который ищем. Он называется частным.

Нам надо узнать, чему равно частное. Но прежде определим, сколько цифр будет в результате. Это очень важный шаг, поэтому упускать его нельзя. Как мы будем это делать? Посмотрите на первую цифру. Это восьмерка. Восемь больше трех. Значит, она может дать нам полноценную цифру в частном. Ставим точку. После восьмерки еще одна цифра, это значит, что частное — двузначное число. Под чертой в уголке карандашом поставьте вторую точку.

Первое неполное делимое — восьмерка. Начинаем ее делить на три, ищем табличный случай. Легче всего уменьшать 8 на единицу.

8 – 1 = 7. В таблице нет деления семи на три.

Уменьшаем еще на 1.

7 – 1 = 6. Шесть делится на три, получается — по два. Записываем 2 в частное под чертой.

Теперь мы должны понять, сколько не разделили. Ведь разделили всего шесть.

А надо было разделить восемь.

Два осталось неразделенным. Это остаток. Он должен быть меньше делителя.

Давайте проверим: два меньше трех.

Да, действительно. Мы сделали все правильно. Этот шаг очень важен. Не забывайте сравнивать остаток с делителем.

После этого сносим следующую цифру с тем, чтобы получить новое неполное делимое

Обратите внимание: нужно писать каждую цифру в своей клетке. Получается неполное делимое 24

Ответ: 28.

Задание 2.

Решите пример столбиком 96 : 4 =

Проверьте:

Ура! Наш математический маршрут пройден. Знания-сокровища из цветных лент превратились в волшебную радугу. Что же у нас вышло, что мы унесем в нашем сундуке. Закончите предложения:

Порядок вычислений в выражениях со скобками

Иногда выражения могут содержать скобки, которые подсказывают порядок выполнения математических действий. В этом случае правило звучит так:

Сначала выполнить действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем — сложение и вычитание.

Выражения в скобках рассматриваются как составные части исходного выражения. В них сохраняется уже известный нам порядок выполнения действий.

Рассмотрим порядок выполнения действий на примерах со скобками.

Пример 1. Вычислить: 10 + (8 — 2 * 3) * (12 — 4) : 2.

Как правильно решить пример:

Выражение содержит скобки, поэтому сначала выполним действия в выражениях, которые заключены в эти скобки.

Начнем с первого 8 — 2 * 3. Что сначала, умножение или вычитание? Мы уже знаем правильный ответ: умножение, затем вычитание. Получается так:

8 — 2 * 3 = 8 — 6 = 2.

Переходим ко второму выражению в скобках 12 — 4. Здесь только одно действие – вычитание, выполняем: 12 — 4 = 8.

Подставляем полученные значения в исходное выражение:

10 + (8 — 2 * 3) * (12 — 4) : 2 = 10 + 2 * 8 : 2.

Порядок действий: умножение, деление, и только потом — сложение. Получится:

10 + 2 * 8 : 2 = 10 + 16 : 2 = 10 + 8 = 18.

На этом все действия выполнены.

Ответ: 10 + (8 — 2 * 3) * (12 — 4) : 2 = 18.

Можно встретить выражения, которые содержат скобки в скобках. Для их решения, нужно последовательно применять правило выполнения действий в выражениях со скобками. Удобнее всего начинать выполнение действий с внутренних скобок и продвигаться к внешним. Покажем на примере.

Пример 2. Выполнить действия в выражении: 9 + (5 + 1 + 4 * (2 + 3)).

Как решаем:

Перед нами выражение со скобками. Это значит, что выполнение действий нужно начать с выражения в скобках, то есть, с 5 + 1 + 4 * (2 + 3). Но! Это выражение также содержит скобки, поэтому начнем сначала с действий в них:

2 + 3 = 5.

Подставим найденное значение: 5 + 1 + 4 * 5. В этом выражении сначала выполняем умножение, затем — сложение:

5 + 1 + 4 * 5 = 5 + 1 + 20 = 26.

Исходное значение, после подстановки примет вид 9 + 26, и остается лишь выполнить сложение: 9 + 26 = 35.

Ответ: 9 + (5 + 1 + 4 * (2 + 3)) = 35.

Как научиться делить столбиком трехзначные числа

Когда в делителе стоит трехзначное число, действие лучше всего выполнять в столбик. Алгоритм математического решения аналогичен делению на двузначное число.

Для примера рассмотрим следующие действия: 146676 : 719

146<719, поэтому сразу возьмем четырехзначное число «1466». В данном значении помещается 2 делителя: 719 х 2= 1438. Цифра «2» будет первым значением частного. Ее запишем справа под уголком.

1466 — 1438 = 28. Полученную разность запишем под чертой слева. Снесем к 28 цифру «7». 287<719, поэтому рядом с двойкой запишем «0».

Снесем последнюю цифру делимого «6», в итоге получится число «2876», которое разделим на 719. Возьмем по 3: 719 х 3 = 2157 — мало, можно взять по 4: 719 х 4 = 2876. Цифру «4» запишем рядом с «20», получим в ответе 204. От 2876 отнимем 2876 , получим разность 0.

Составные задачи деления суммы на число и числа на сумму

1. Было 16 больших и 12 маленьких кнопок. Все их поставили на 4 куртки, поровну на каждую. Сколько кнопок ставили на каждую куртку?2. 38 девочек и 42 мальчика. Всех детей рассадили в 2 автобуса поровну. Сколько детей в каждом автобусе?3. С одного куста облепихи собрали 12 кг ягод, а с другого куста 16 кг. Все ягоды разложили в 4 одинаковых ящика. Сколько килограммов ягод в каждом?4. Коля с одной грядки выдернул 16 морковок, а с другой 24 морковки. Всю морковку он раздал восьми кроликам поровну. Сколько морковок получил каждый?5. С одной пасеки собрали 12 кг мёда, а с другой 9 кг. Весь мёд поровну разлили в 3 бидона. Сколько килограммов мёда в каждом бидоне?6. У Максима было 2 конструктора. В одном конструкторе 60 деталей, а в другом 20 деталей. Из всех деталей он сделал 4 одинаковые машины. Сколько деталей расходовал Максим на каждую машину?7. Для уроков труда купили 16 листов цветного картона и 34 листа простого картона. Весь картон разложили в 5 одинаковых пачек. Сколько листов картона в каждой пачке?8. У дяди Лёши было 15 жёлтых канареек и 5 оранжевых. Всех птиц он разместил в 10 одинаковых клеток. Сколько птиц в каждой клетке?9. Хозяйка утром надоила 16 л молока, а днём 14 л. Всё молоко она разлила в 10 одинаковых банок для продажи. Сколько литров молока в каждой банке?10. Зоопарк получил 19 кг филе хека и 23 кг филе окуня. Всего этого рыбного филе хватило моржонку на 7 дней. Сколько килограммов рыбного филе получает моржонок в день, если ежедневно ему выдают одинаковое количество филе?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector